Fall 2015 Forest Health Cooperative Business Meeting Update: A Focus on Products

Forest Products Development Center

Forest Products Development Center

Rationale & Problem Identification Forest Products Forest Health

- Need genetically superior families for stiffness and forest health.
- Need reliable tools.
- NIR for chemistry and stiffness.
- Acoustics for stiffness
 - What is the issue with acoustics and what are we doing to solve it?

- Pine Decline/Disease has been on the rise.
- There is a need to rapidly screen trees for disease resistance
- There is a need to identify genetic families with superior disease resistance.

2

School of Forestry and Wildlife Sciences, Auburn University

Key Objectives

- Find genetic families superior in stiffness and forest health.
- Develop a standardized method for acoustics such that industry can use in the field.
- Separate out sensitivity of acoustics to density, chemistry, and microfibril angle. Does it match that of real stiffness?

3

School of Forestry and Wildlife Sciences, Auburn Universit

Genetic Family Research

Forest Products Development Center

Methods and Materials

- Acoustics measurements taken on Rayonier and Weyerhaeuser-Plum Creek Sites.
- Randomized Block Design at each Site
 - -~15 trees per family
 - 14 families
 - 15 years of age

School of Forestry and Wildlife Sciences, Auburn University

Forest Products Development Center

Assessment of 14 Genetic Families with Acoustics (15 year old trees)

 $Effect of site (Florida versus Georgia) \ on \ \underline{ \ dynamic \ MOE \ } of the \ 14 \ tree \ progenies - type \ III \ SS$

Source	DF	Type III SS	Mean Square	F Value	Pr > F
site	1	16.01	16.01	5.61	0.0192
Block	14	42.49	3.035	1.06	0.3955
Family	14	62.22	4.44	1.56	0.0988
site*Family	14	58.45	4.17	1.46	0.1328
Family*Block	192	577.68	3.01	1.05	0.3718
site*Block	14	47.83	3.416	1.20	0.2840

School of Forestry and Wildlife Sciences, Auburn University

Differences Between Machines and Proposed Standardized Method

Forest Products Development Center

Industrial Solutions to the Problem

- MOE = V²*density
- Estimate density by:
 - Send signal through cross section to estimate density.
 - Use pylodyn
 - Use increment core
- Calibrate each machine to lumber MOE.
- Develop a method to calibrate for Wood not Metal.

13

School of Forestry and Wildlife Sciences, Auburn University

Machine Sensitivity to Anatomy, Chemistry, and Density

Forest Products Development Center

Machine Sensitivity to Real Stiffness Measurement

	MOR			MOE			Log velocity		
	Coefficient	R ²	Ad R ²	Coefficient	R ²	Ad R ²	Coefficient	R ²	Ad R ²
Model 1	-137.9***	76.09	71.82	-32.3***	73.03	68.22	-2.2***	59.84	52.67
Cellulose	0.83ns			0.37**			0.09***	*	
Hemicelluloses	1.41**			0.27***			0.04*		
Lignin	1.45 ns			0.19 ^{ms}			-0.03 ns		
OWD	182.8***			21.8***			2.79***		
MFA	0.08 115			0.05 ns			0.04*		

Essien, Via, Echkardt et al. 2015 In submission to PLOS-1

17

School of Forestry and Wildlife Sciences, Auburn University

Novel New Finding

Forest Products Development Center

thool of Forestry and Wildlife Sciences, Auburn University

Oven Dry Weight Across Scale? School of Forestry and Wildlife Sciences, Auburn University

Acknowledgements

- Forest Health Cooperative
 - Weyerhaeuser-Plum Creek, Rayonier
- Forest Products Development Center
- Regions Bank
- Westervelt, Rex Lumber, Timber Products Inspection

21

School of Forestry and Wildlife Sciences, Auburn University